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The Impact of Climate Change on Chronic Kidney Disease
İklim Değişikliğinin Kronik Böbrek Hastalığı Üzerindeki Etkisi
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ABSTRACT ÖZ

Climate change problems like air pollution and global warming are 
assumed to be related to human activity. Global warming and air 
pollution are related issues. The state of health is assumed to be 
negatively impacted by these climatic changes, particularly in terms 
of the incidence and progression of chronic kidney disease. The 
aim of this review is to update physicians on how air pollution and 
global warming affect kidney disease.
Keywords: Climate change, chronic kidney disease, heat stroke, 
particulate matter

Hava kirliliği ve küresel ısınma gibi iklim değişikliği sorunlarının 
insan faaliyetleriyle ilgili olduğu varsayılmaktadır. Küresel ısınma 
ve hava kirliliği birbiriyle ilişkili konulardır. Sağlık durumunun, 
özellikle kronik böbrek hastalığı insidansı ve ilerlemesi açısından, 
bu iklim değişikliklerinden olumsuz etkilendiği varsayılmaktadır. 
Bu derlemenin amacı, hekimleri hava kirliliği ve küresel ısınmanın 
böbrek hastalığını nasıl etkilediği konusunda güncellemektir.
Anahtar Sözcükler: İklim değişikliği, kronik böbrek hastalığı, sıcak 
çarpması, partikül madde

Introduction 
One of the biggest hazards to human health in the twenty-
first century is climate warming, which is responsible for 12.6 
million deaths in the world (1). Both kidney illness and climate 
change get worse over time. Those who repeatedly or extensively 
undergo dehydration insults from extreme heat are more likely to 
suffer from acute or chronic kidney problems. Particle pollution, 
a primary result of burning fossil fuels, may also be largely 
responsible for the prevalence of chronic kidney disease (CKD) 
and CKD-related pathology (2).

The UN Framework Convention on Climate Change defines 
climate change as a change of climate that is related directly or 
indirectly to human activity that modifies the composition of the 
global atmosphere in addition to natural climate variability (3). 
Climate change poses a dilemma that imperils the continuation 
of life as we know it on Earth. Recognizably, according to the 
Intergovernmental Panel on Climate Change (IPCC), human 
activity has caused climate warming at an unusual tempo in the 
last 2000 years (4). If emissions continue at their current rate, the 

IPCC estimates that globally the temperatures will rise by 2-3.5 
degrees Celsius by the end of the century (4). 

The effects of climate change are particularly harmful to kidney 
health because environmental issues make kidney diseases worse. 
However, dialysis therapy has a significant environmental impact 
due to a variety of aspects, including energy and water use, 
greenhouse gas emissions, and waste production (5).

Despite numerous international climate agreements, the world’s 
reactions are woefully insufficient, and the nephrological 
community’s involvement appears to be lacking (5).

Climate Change-Related Kidney Disorders

People with kidney illness are more vulnerable to the direct 
health effects of climate change as well as to disruptions in the 
healthcare system during natural disasters, which exacerbates the 
variety of negative effects of climate warming (6). Climate change 
effects like heat exposure and volume depletion are risk factors 
for nephrolithiasis, acute kidney injury (AKI) as well as CKD 
in South America and abroad (Mesoamerican nephropathy) (7). 
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Low air quality has a negative impact on the progression of 
CKD. In addition, due to climate warming, changes in the 
landscape caused by precipitation, and human behavior that 
increases vector-human contact, vector-borne diseases continue 
to be major causes of kidney disease in low-income nations and 
are spreading throughout the world (8). 

Heat stress as a cause of kidney disorders

In recent studies, CKD epidemics have been reported in several 
high-temperature places of the world, mainly affecting individuals 
who perform physical work in sweltering temperatures. (9) The 
disease is more prevalent in Central America’s hotter regions 
due to heat stress (10), which has given rise to the theory that 
kidney disorders may be caused by global warming (11). In fact, 
a study revealed that working in sugarcane fields was linked 
to higher humidity since there were cane present and El Nino 
events (12). Also, several studies in South America have shown 
that repeated AKI from heatstroke is increasing the incidence of 
CKD in sugarcane workers (13-15). The majority of cases show 
no symptoms, but some patients exhibit fever, leukocytosis, 
leukocyturia, and AKI, which may necessitate hospitalization 
(16).

Increased body temperatures, the activation of the polyol-
fructokinase pathway by hyperosmolarity, and the long-term 
effects of vasopressin on tubular and glomerular injury are 
probably the mechanism of AKI (17). Also, according to 
different studies, heat, volume depletion, and increased uric acid 
serum levels due to exercise-induced rhabdomyolysis result in 
concentrated and acidic urine, which can cause tubular injury, 
nephrolithiasis, and urinary tract infection (18-20). Rehydrating 
with soft drinks also carries the risk of AKI because they contain 
fructose, which when metabolized by the kidneys causes tubular 
damage, inflammation, and oxidative stress (21).

Heat stress nephropathy is now being documented worldwide, 
especially in hot agricultural communities, which is concerning 
since it can lead to an epidemic of CKD (22,23).

Vector-Borne Diseases and Kidney

In warm areas, acute febrile infections from vector-borne diseases 
are a major contributor to AKI. The most frequent diseases that 
occur in warmer climates are caused by the zika virus, malaria, 
and dengue. Mosquitoes, especially female ones, which are mostly 
to blame for vector-borne diseases, eat more often and lay more 
eggs in warmer climates (24). The mortality rate for patients with 
malaria increases by 45% when AKI is present (25). Even though 
the information on AKI caused by dengue is scarcer and more 
inconsistent, rates that have been documented in patients who 
have needed hospitalization are relatively high, with fatality rates 
of 9% to 25% (26). Another mosquito-borne virus, Zika, may 
become more dangerous to people as a result of climate warming. 
Often asymptomatic or resulting in a mild febrile viral disease, the 
infection can result in fetus malformation, such as microcephaly 
(27). Travelers with immunosuppressed conditions, such as those 
with kidney disease or who are receiving dialysis, and transplant 
patients have recently been warned to take vigilance (27). 

Particulate Matters and Kidney

One of the main contributors to the burden of diseases worldwide 
is considered to be air pollution (28). The principal component of 
air pollution that has the greatest detrimental impact on human 
health is particulate matter (PM), which predominantly consists 
of solid particles produced during the combustion of coal, 
gasoline, and diesel fuels (29). Other elements of environmental 
air pollution may include differently sized particulates (e.g., 
PM2.5, which has a diameter of 2.5 µm, and PM2.5-10), gaseous 
pollutants (e.g., nitrogen dioxide, carbon monoxide, sulphur 
dioxide, and ozone), and heavy metals (cadmium, lead, and 
mercury) (30).

It is commonly assumed that particulate matter, especially 
PM2.5, has a negative impact on the onset and progression of 
cardiovascular disease due to the high risk of vascular dysfunction, 
like inflammation and atherosclerosis (31,32). The kidney, 
which is composed of arteries and arterioles, may potentially 
be vulnerable to PM-related atherosclerosis (31). A new risk 
factor for CKD that is getting increasing attention currently is 
air pollution (33), which is in addition to traditional risk factors 
for the development of kidney diseases such as hypertension, 
diabetes, ethnicity, age, smoking, episodes of AKI, use of analgesic 
drugs, and genetic factors (34,35). In a local cohort study where 
669 older men were conducted, Mehta et al. (36) discovered 
that every 2.1 µg/m3 increase in PM2.5 exposure was linked to 
a 1.87 mL/min/1.73 m2 decrease in eGFR and an additional 
yearly impairment in kidney function of 0.60 mL/min/1.73 m2. 
According to a different study by Xu et al. (37), membranous 
nephropathy risk was elevated by prolonged exposure to high 
PM2.5 concentrations. According to a cohort study, conducted on 
more than 2 million US veterans without a history of kidney 
disease, chronic exposure to PM and gaseous pollutants is linked 
to an elevated risk of new-onset and progression of CKD, and 
development of kidney failure which requires renal replacement 
therapy (34). The risk is increased by 26-28% for every 10 µg/m3 
rise in PM2.5 concentration (34).

Arsenic 

The occurrence of kidney damage and the start of hypertension 
may both be influenced by exposure to arsenic (As) in the 
environment, at work, and in an individual’s diet (38,39). A study 
conducted in Taiwan showed a significant relationship between 
urinary As and the incidence of CKD. It was shown that high 
levels of urine As quadrupled the chance of developing CKD 
(40). Acute As exposure to the kidney can cause hypercalciuria, 
albuminuria, nephrocalcinosis, and necrosis of the kidney 
papillae, as well as tubulointerstitial nephritis and acute tubular 
necrosis (41,42).

Cadmium 

Another common nephrotoxic environmental contaminant 
is cadmium (Cd). Diet and smoking are the main sources of 
Cd exposure. Since Cd directly damages the kidneys, it can 
result in polyuria, tubular damage, Fanconi syndrome, as well 
as progressive reduction of eGFR (43). The idea that chronic 
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Cd exposure is thought to hasten the progressive reduction of 
eGFR is supported by a variety of experimental research (44,45). 
Proteinuria is the most common complication (46). Megalin and 
cubilin, which promote the endocytosis of filtered proteins along 
the proximal tubule, have been linked to proteinuria (47,48). 
The prevalence of kidney stones also rises in people who are 
persistently exposed to or receive higher doses of Cd, probably 
as a result of the elevated calcium concentration in urine (38).

Lead 

The primary effects of lead (Pb) exposure on kidney cells 
are inflammation and mitochondrial oxidative stress (38). 
Exposure to low levels of Pb results in glomerular hypertrophy 
(38). Fanconi syndrome is caused by acute Pb exposure and 
tubulointerstitial nephritis from long-term Pb exposure (49). 
Different studies conducted in different countries showed a 
positive correlation between Pd exposure and serum creatinine 
concentration (50,51).

Mercury 

Mercury (Hg) has also been linked to the development of 
CKD (52). Endoplasmic reticulum dilatation, transformed 
mitochondrial structure, and nuclear pyknosis are all results of 
short-term exposure (53). Microvilli start to disappear after 12 
hours, and cell death is accompanied by rupture of the plasma 
membrane and cell separation from the basement membrane 
(54). Glomerular damage can also result from long-term exposure 
to Hg substances (38). A study that included 272 participants 
with CKD and 272 controls who were matched for age, sex, and 
area revealed that exposure to Hg was independently linked to a 
higher probability of developing CKD (55).

Tobacco 

Another air contaminant that is hazardous to kidneys is tobacco. 
There are various theories that explain various mechanisms 
related to CKD. In healthy persons, smoking has been linked 
to microalbuminuria and idiopathic nodular glomerulosclerosis, 
and in those with CKD, especially with diabetic nephropathy 
(DN), it has been linked to more heavy proteinuria (56,57). In 
a study where 926 cases of CKD and 998 controls participated, 
an association between smoking and glomerulonephritis and 
nephrosclerosis was discovered (58). Smoking accelerated 
the development of DN and nephroangiosclerosis (58,59). 
Endothelial dysfunction, intimal hyperplasia, and atherosclerosis 
of small and large vessels are all effects of tobacco (57). Ingredients 
in tobacco cause glomerulosclerosis, tubulointerstitial fibrosis, 
and mesangial proliferation in the kidney (60). Particularly, 
nicotine increases the formation of extracellular matrix in human 
mesangial cells (61) and acrolein causes kidney cell apoptosis 
and the generation of reactive oxygen species (ROS) (62). 
Another component of tobacco that negatively affects CKD is 
Cd. Smokers’ serum Cd concentrations are 4- to 5-times greater 
than non-smokers’, and their kidney Cd concentrations are 2- to 
3-times higher (63). 

An experimental study suggested that mechanisms for smoking-
induced kidney injury included increased sympathetic activity 

which led to hypertension and increased intraglomerular 
capillary pressure (64). It was shown that the incidence of kidney 
function loss was greater in current smokers than in non-smokers 
(65).

In addition to these results, cigarette use has also been linked to 
proteinuria in people with and without CKD (66-68). Proteinuria 
was discovered in 4.6% of current smokers and 1.5% of non-
smokers among a population selected from a chemical factory in 
Japan (68). In a meta-analysis among smokers with type 1 DM or 
type 2 DM compared to non-smokers, the incidence rate of DN 
was greater (69). Also, the study indicated that smoking posed 
the greatest risk for macroalbuminuria, most likely over a long 
period of time (69). To assess smoking exposure, measurements 
of the nicotine metabolite cotinine and creatinine levels in serum, 
as well as the albumin/creatinine ratio were evaluated in a study 
conducted in Turkey (70). Serum cotinine concentrations and 
the urinary albumin-creatinine ratio were both greater in current 
and passive smokers than in controls, although creatinine blood 
concentrations were higher in current smokers (70).

Traffic air pollution 

Another type of air pollution is that caused by traffic. In a study 
in Taipei city, the authors came to the conclusion that 1-year 
exposures to air pollution from traffic, especially to PM2,5 and 
PM10, were linked to lower eGFR, a higher prevalence, and 
incidence of CKD (71). In another study conducted in Runcorn, 
UK, the author found that compared to a control population 
residing distant from industrial facilities, those who lived close to 
industrial facilities had an increased mortality rate from CKD (72).

The effect of kidney disease on the environment

The medical industry has a significant environmental impact 
because of the amount of water and energy used in manufacturing, 
interventions, and waste production (73). Nature is in danger due 
to the pharmaceutical sector’s large-scale emissions of greenhouse 
gases and pollutants (74). Non-etheless, dialysis involves a 
heavier strain compared to other therapeutic modalities. There 
is no doubt that producing plastic, which is a crucial element of 
dialyzers and dialysis equipment, needs a significant quantity of 
chemicals, energy, and water (75). Moreover, each dialysis session 
uses large amounts of drinkable water, including reverse osmosis 
water and dialysate generation (75). With a lot of such units 
around the world, the typical unit’s water use can easily reach 
one million liters per year (75). Numerous factors contribute 
to the extensive production of greenhouse gases and pollutants, 
including the manufacturing of filters, machines, and other 
consumables, dialysate production and heating, monitoring, 
lighting, and climatization of the unit, as well as the transport 
of materials and patients (76,77). Discarding auxiliary resources 
increases the waste problem even more (gloves, protective 
clothing, food packages, and drinking cups for meals provided 
during dialysis, drug wrappings, and containers) (78). However, 
there is no data comparing the overall ecological burden of 
peritoneal dialysis and hemodialysis (HD) techniques. According 
to one investigation, transplanting had a better environmental 
impact compared to dialysis modalities (79). Although home 
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dialysis is frequently thought of as being more environmentally 
than other modalities due to the lower water consumption of 
the treatment, this is likely largely countered by the water and 
energy required to create a large number of plastic dialysate bags, 
dialysate, and transport those bags (77,79). 

Conclusion
In conclusion, climate change has a big impact on people’s 
health. Dehydration, elevated serum uric acid levels, and 
hyperosmolarity induced by heat stroke can result in AKI, which 
can eventually result in CKD. Due to the dysregulation of renal 
hemodynamics, oxidative stress, and inflammatory response, 
air pollution, an increased level of varied-size PM and heavy 
metals may also result in AKI. People need to be educated about 
maintaining a low-carbon lifestyle and stopping smoking.
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